Decentralized Control of Petri Nets

Marian V. Iordache and Panos J. Antsaklis
Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556
iordache.1@nd.edu

June 24, 2003
The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting.

1. **Overview of the SBPI**
2. The Decentralized Setting
3. Decentralized Admissibility
4. Enforcing D-Admissible Constraints
5. Enforcing D-Inadmissible Constraints
 - (a) Enforcement With Communication
 - (b) Enforcement Without Communication
 - (c) Enforcement With Restricted Communication
Overview of the Supervision Based on Place Invariants

Supervision Based on Place Invariants: introduced by several researchers (Giua, Yamalidou, Moody, and others).

The specification of the SBPI is $L\mu \leq b$.

Case I: All transitions are controllable and observable.

Let D be the incidence matrix of the plant Petri net. The supervisor can be designed as a Petri net of incidence matrix

$$D_s = -LD$$

If μ_0 is the initial marking of the plant, the initial marking of the supervisor is

$$\mu_{s0} = b - L\mu_0$$

The places of the supervisor are called *control places*. The closed-loop is a Petri net of incidence matrix

$$D_c = \begin{bmatrix} D \\ -LD \end{bmatrix}$$
Overview of the Supervision Based on Place Invariants

Example

The set of constraints

\[
\mu(p_1) + \mu(p_3) \geq 1 \\
\mu(p_2) + \mu(p_3) \geq 1
\]

is described by \(L\mu \leq b \) with:

\[
L = \begin{bmatrix}
-1 & 0 & -1 \\
0 & -1 & -1
\end{bmatrix} \quad b = \begin{bmatrix}
-1 \\
-1
\end{bmatrix}
\]

The incidence matrix is:

\[
D = \begin{bmatrix}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
2 & -1 & -1
\end{bmatrix}
\]

The supervisor has two control places (as \(L \) has two rows):

\[
D_s = -LD = \begin{bmatrix}
1 & 0 & -1 \\
1 & -1 & 0
\end{bmatrix}
\]

M.V. Iordache and P.J. Antsaklis, Decentralized Control of Petri Nets.
Overview of the Supervision Based on Place Invariants

The initial marking of the supervisor is

$$\mu_{s0} = b - L\mu_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Note that for all reachable markings

$$\mu_s = b - L\mu$$

This approach is called *supervision based on place invariants*, as it creates for each row of L a place invariant. In particular:

- $$\mu(p_1) + \mu(p_3) - \mu(C_1) = 1$$
- $$\mu(p_2) + \mu(p_3) - \mu(C_2) = 1$$
Overview of the Supervision Based on Place Invariants

Case II: Not all transitions are controllable and observable.

A supervisor should not inhibit uncontrollable transitions or observe firings of unobservable transitions.

Then, the supervisory approach of Case I can still be used if (but not only if)

\[
LD_{uo} = 0 \quad \text{and} \quad LD_{uc} \leq 0
\]

(1)

where \(D_{uc}\) and \(D_{uo}\) are the restrictions of the incidence matrix \(D\) to the columns of the uncontrollable and unobservable transitions, respectively.

To enforce \(L \mu \leq b\) we can proceed as follows:

1. If \(L\) satisfies (1), find the supervisor as in Case I. Otherwise:
2. Transform \(L \mu \leq b\) to \(L_a \mu \leq b_a\) such that \(L_a \mu \leq b_a \Rightarrow L \mu \leq b\) and \(L_a\) satisfies (1). Then the supervised PN is obtained as in Case I by enforcing \(L_a \mu \leq b_a\) instead of \(L \mu \leq b\).
Overview of the Supervision Based on Place Invariants Example

Assume \(t_1 \) unobservable and the same specification:

\[
\begin{align*}
\mu(p_1) + \mu(p_3) &\geq 1 \\
\mu(p_2) + \mu(p_3) &\geq 1
\end{align*}
\]

\[
L = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix} \quad b = \begin{bmatrix} -1 \\ -1 \end{bmatrix}
\]

As \(D = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & -1 & -1 \end{bmatrix} \), \(D_{uo} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} \) and \(D_{uc} \) is empty.

Note that \(LD_{uo} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \neq 0 \).

Therefore, the constraints are transformed to

\[
\begin{align*}
2\mu(p_1) + \mu(p_3) &\geq 1 \\
2\mu(p_2) + \mu(p_3) &\geq 1
\end{align*}
\]

and enforced by the control places \(C_1 \) and \(C_2 \).

\(t_1 \) is unobservable

M.V. Iordache and P.J. Antsaklis, *Decentralized Control of Petri Nets.* 7
The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting.

1. Overview of the SBPI

2. **The Decentralized Setting**

3. Decentralized Admissibility

4. Enforcing D-Admissible Constraints

5. Enforcing D-Inadmissible Constraints

 (a) Enforcement With Communication

 (b) Enforcement Without Communication

 (c) Enforcement With Restricted Communication
Centralized vs Decentralized

M.V. Iordache and P.J. Antsaklis, *Decentralized Control of Petri Nets.*
Decentralized Supervision

Example 1

\[T_{c,1} = T_{o,1} = \{t_1, t_2\} \]

\[T_{c,2} = T_{o,2} = \{t_3, t_4\} \]

Specification: \(\mu_1 + \mu_3 \leq 1 \)
Decentralized Supervision

Example 2

\[T_{c,1} = T_{o,1} = \{t_1, t_2\} \]

\[T_{c,2} = T_{o,2} = \{t_3, t_4\} \]

\[T_{c,3} = \{t_5\} \]

\[T_{o,3} = \{t_1, t_2, t_3, t_4, t_5\} \]

Specification:

\[\mu_1 + \mu_3 \leq 1 \]

\[\mu_5 \leq 1 \]

\[\mu_6 \leq 1 \]
Decentralized Supervision

Given:

- the Petri net model of the system
- the sets of controllable and observable $T_{c,i}$ and $T_{o,i}$, $i = 1 \ldots p$.
- the specification $L \mu \leq b$.

Problem 1: Find the supervisors $S_1 \ldots S_p$ such that

1. The joint operation of $S_1 \ldots S_p$ ensures the plant satisfies $L \mu \leq b$.
2. Each S_i controls only transitions in $T_{c,i}$ and observes only transitions in $T_{o,i}$.
Decentralized Supervision with Communication

Problem 2: Solve Problem 1 when communication is allowed.

Communication can be used to enable S_i to

- control $t \in \bigcup_{j \neq i} T_{c,j}$, $t \notin T_{c,i}$.
- observe $t \in \bigcup_{j \neq i} T_{o,j}$, $t \notin T_{o,i}$.

Remark: Centralized supervision assumes:

$$T_{c} = \bigcup_{j=1\ldots p} T_{c,j} \text{ and } T_{o} = \bigcup_{j=1\ldots p} T_{o,j}$$

that is, full (maximum) communication!

Optimality criteria:

- minimum communication.
- maximally permissive design.
The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting.

1. Overview of the SBPI
2. The Decentralized Setting

3. **Decentralized Admissibility**
4. Enforcing D-Admissible Constraints
5. Enforcing D-Inadmissible Constraints

 (a) *Enforcement With Communication*

 (b) *Enforcement Without Communication*

 (c) *Enforcement With Restricted Communication*
Decentralized Admissibility

In centralized supervision:

- it is (computationally) easy to enforce constraints $L\mu \leq b$ on fully controllable and observable PNs.
- in partially controllable and observable PNs, we say that $L\mu \leq b$ is \textit{c-admissible} if it can be enforced as if the PN were fully controllable and observable.
- constraints $L\mu \leq b$ that are not c-admissible are transformed to a c-admissible form $L_a\mu \leq b_a$ such that $L_a\mu \leq b_a \implies L\mu \leq b$.

In decentralized supervision:

- we extend c-admissibility to \textit{d-admissibility}, such that
 - d-admissible constraints $L\mu \leq b$ are (computationally) easy to enforce.
 - checking whether a set of constraints is d-admissible is (computationally) tractable.
- the definition we propose allows us to
 - transform constraints $L\mu \leq b$ that are not d-admissible to d-admissible constraints $L_a\mu \leq b_a$ such that $L_a\mu \leq b_a \implies L\mu \leq b$.
 - enforce constraints that are not d-admissible by enabling communication
Decentralized Admissibility

Let $L \mu \leq b$, $L \in \mathbb{Z}^{m \times |P|}$ and $b \in \mathbb{Z}^{m \times 1}$ be a set of constraints. A constraint of $L \mu \leq b$ is denoted by $l \mu \leq c$, $l \in \mathbb{Z}^{1 \times |P|}$ and $c \in \mathbb{Z}$.

$l \mu \leq c$ is **d-admissible** with respect to $(\mathcal{N}, \mu_0, T_c, 1 \ldots T_c, n, T_o, 1 \ldots T_o, n)$, if there is $C \subseteq \{1, 2, \ldots, n\}$, $C \neq \emptyset$, such that $l \mu \leq c$ is c-admissible with respect to $(\mathcal{N}, \mu_0, T_c, T_o)$, where $T_c = \bigcup_{i \in C} T_{c,i}$ and $T_o = \bigcap_{i \in C} T_{o,i}$.

$L \mu \leq b$ is **d-admissible** if each of its constraints $l \mu \leq c$ is d-admissible.

- c-admissibility is a special case of d-admissibility, in the sense that if $l \mu \leq c$ is c-admissible w.r.t. $(\mathcal{N}, T_{c,i}, T_{o,i})$, $l \mu \leq c$ is d-admissible (set $C = \{i\}$).
- $l \mu \leq c$ d-admissible implies
 - If firing a plant-enabled transition t violates $l \mu \leq c$ then $\exists i \in C$: $t \in T_{c,i}$.
 - All supervisors S_i with $i \in C$ are able to know the value of $c - l \mu$.
- an algorithm checking whether a set of constraints is d-admissible is in the paper.
The goal of the paper is to *extend the supervision based on place invariants (SBPI) to a decentralized setting*

1. Overview of the SBPI
2. The Decentralized Setting
3. Decentralized Admissibility

4. Enforcing D-Admissible Constraints

5. Enforcing D-Inadmissible Constraints

 (a) *Enforcement With Communication*

 (b) *Enforcement Without Communication*

 (c) *Enforcement With Restricted Communication*
Enforcement of D-admissible Constraints

Let D and μ_0 be the incidence matrix and the initial marking of a PN \mathcal{N}.

Recall the centralized enforcement of a c-admissible constraint $l\mu \leq c$ on (\mathcal{N}, μ_0):

- A control place C is generated such that for all t:
 1. If $lD(\cdot, t) > 0$, then $C \in \bullet t$ and the weight is $W(C, t) = lD(\cdot, t)$.
 2. If $lD(\cdot, t) < 0$, then $C \in t\bullet$ and the weight is $W(t, C) = -lD(\cdot, t)$.
- The initial marking of C is $c - l\mu_0$.

In the decentralized enforcement of a d-admissible constraint $l\mu \leq c$, for all $i \in C$:

- Define $x_i \in \mathbb{N}$, as the state variable of S_i.
- Initialize x_i to $c - l\mu_0$.
- S_i disables a transition t if $t \in T_{c,i}$ and $x_i < lD(\cdot, t)$.
- If $t \in T_{o,i}$ fires and $lD(\cdot, t) \neq 0$, then $x_i = x_i - lD(\cdot, t)$.

It can be proved that the decentralized supervisor $\bigwedge_{i \in C} S_i$ enforces $l\mu \leq c$ and that it is equally permissive to the centralized supervisor S enforcing $l\mu \leq c$ in the fully controllable and observable version of \mathcal{N}.
Enforcement of D-Admissible Constraints

Desired constraint: $\mu_1 + \mu_3 \leq 1$. Initial marking $\mu_0 = [0, 1, 1, 0]^T$.

Decentralized setting: $T_{c,1} = \{t_1, t_2\}$, $T_{c,2} = \{t_3, t_4\}$, $T_{o,1} = T_{o,2} = \{t_1, t_2, t_3, t_4\}$.

The supervisor S_1:
- initializes x_1 to 0.
- disables t_1 if $x_1 = 0$
- increments x_1 if t_2 or t_3 fires.
- decrements x_1 if t_1 or t_4 fires.

The supervisor S_2:
- initializes x_2 to 0.
- disables t_4 if $x_2 = 0$
- increments x_2 if t_2 or t_3 fires.
- decrements x_2 if t_1 or t_4 fires.

A graphical representation is possible, however it may be both helpful and misleading.
The goal of the paper is to
extend the supervision based on place invariants (SBPI) to a decentralized setting

1. Overview of the SBPI
2. The Decentralized Setting
3. Decentralized Admissibility
4. Enforcing D-Admissible Constraints
5. Enforcing D-Inadmissible Constraints
 > (a) Enforcement With Communication
 > (b) Enforcement Without Communication
 > (c) Enforcement With Restricted Communication
Enforcement of D-Inadmissible Constraints via Communication

\[\mu_1 + \mu_3 \leq 1 \] is d-inadmissible for \(T_{c,1} = T_{o,1} = \{t_1, t_2\} \) and \(T_{c,2} = T_{o,2} = \{t_3, t_4\} \).

The constraint becomes d-admissible if the transitions \(t_1 \) and \(t_2 \) are communicated to subsystem 2 and the transitions \(t_3 \) and \(t_4 \) to subsystem 1.

Then \(T_{o,1} = T_{o,2} = \{t_1, t_2, t_3, t_4\} \), \(T_{c,1} = \{t_1, t_2\} \) and \(T_{c,2} = \{t_3, t_4\} \).
D-inadmissible constraints can be made admissible by communication:

1. Let $T_{c,L} = \bigcup_{i=1}^{n} T_{c,i}$ and $T_{o,L} = \bigcup_{i=1}^{n} T_{o,i}$.

2. Is the specification c-admissible with respect to $(\mathcal{N}, T_{c,L}, T_{o,L})$? If not, transform it to be c-admissible.

3. Let S be the centralized SBPI supervisor enforcing the specification. Let T_c be the set of transitions controlled by S and T_o the set of transitions detected by S.

4. Find a set C such that $\bigcup_{i \in C} T_{c,i} \supseteq T_c$.

5. The communication can be designed as follows: for all $t \in T_o \setminus (\bigcap_{i \in C} T_{o,i})$, a subsystem j such that $t \in T_{o,j}$ transmits the firings of t to all supervisors S_k with $t \notin T_{o,k}$ and $k \in C$.

6. Design the decentralized supervisor according to the algorithm for d-admissible constraints.

M.V. Iordache and P.J. Antsaklis, *Decentralized Control of Petri Nets.*
Enforcement of D-Inadmissible Constraints via Communication

In the algorithm

- No communication restrictions considered. These are considered later.
- The supervisor is equally permissive to the centralized supervisor.

In the communication policy proposed in the algorithm:

- The control decisions are taken locally (no control decisions are communicated).
- Assuming broadcast, there is less communication traffic than in the centralized solution, which remotely observes and controls the transitions in T_o and T_c, respectively.
- Better communication policies may be possible. (The optimal policy can be obtained by solving an integer program.)
Enforcement of D-Inadmissible Constraints via Communication

$\mu_1 + \mu_3 \leq 1$ is d-inadmissible for $T_{c,1} = T_{o,1} = \{t_1, t_2\}$ and $T_{c,2} = T_{o,2} = \{t_3, t_4\}$.

$T_{c,L} = T_{o,L} = \{t_1, t_2, t_3, t_4\}$; $\mu_1 + \mu_3 \leq 1$ is c-admissible w.r.t. $(N, T_{c,L}, T_{o,L})$.

T_c and T_o found from the centralized SBPI:

$T_c = \{t_1, t_4\}$ \hspace{1cm} $T_o = \{t_1, t_2, t_3, t_4\}$

$C = \{1, 2\}$
Enforcement of D-Inadmissible Constraints via Communication

Centralized

Broadcast: t_1, t_2, t_3, and t_4.
Remotely control: t_1 and t_4.

Decentralized

Broadcast: t_1 and t_2.
Remotely control: —
Broadcast: t_3 and t_4.
Remotely control: —
Enforcement of D-Inadmissible Constraints via Communication

Still another solution ...

In general, several equally permissive and decentralized solutions are possible.

The optimal solution depends on the relative cost of broadcast/remote control.
The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting.

1. Overview of the SBPI
2. The Decentralized Setting
3. Decentralized Admissibility
4. Enforcing D-Admissible Constraints
5. Enforcing D-Inadmissible Constraints
 (a) Enforcement With Communication
 > (b) Enforcement Without Communication
 (c) Enforcement With Restricted Communication
Enforcement of D-Inadmissible Constraints via Transformations

Specification: \(L \mu \leq b \) (d-inadmissible)

Goal: Find \(L_1 \mu \leq b_1 \ldots L_m \mu \leq b_m \) that are d-admissible such that

\[
(L_1 \mu \leq b_1 \land L_2 \mu \leq b_2 \land \ldots L_m \mu \leq b_m) \Rightarrow L \mu \leq b
\]

(2)

Remarks:

- Each \(L_i \mu \leq b_i \) has a different set \(C_i \).
- The sets \(C_i \) are given.
- Any solution can be found if all sets \(C_i \) are given. If so, \(m = 2^n - 1 \).
- However, we could discard the sets \(C_i \) with \(T_o^{(i)} = \bigcap_{i \in C_i} T_{o,i} = \emptyset \).
- In practice, we expect most sets \(C_i \) to have \(T_o^{(i)} = \emptyset \).

We propose to simplify (1) to:

\[
[(L_1 + L_2 + \ldots L_m) \mu \leq (b_1 + b_2 + \ldots b_m)] \Rightarrow L \mu \leq b
\]

(3)
Enforcement of D-Inadmissible Constraints via Transformations

The following parametrization is used:

\[L_1 + L_2 + \ldots + L_m = R_1 + R_2L \] \hfill (4)

\[b_1 + b_2 + \ldots + b_m = R_2(b + 1) - 1 \] \hfill (5)

for \(R_1 \in \mathbb{N}^{m \times |P|} \), \(R_2 \in \mathbb{N}^{m \times m} \) such that \(R_2 > 0 \) and \(R_2 \) is diagonal.

Admissibility constraints

\[L_i D(\cdot, T^{(i)}_{uc}) \leq 0 \] \hfill (6)

\[L_i D(\cdot, T^{(i)}_{uo}) = 0 \] \hfill (7)

where \(T^{(i)}_{uc} = \bigcap_{i \in C_i} T_{uc,i} \) and \(T^{(i)}_{uo} = \bigcup_{i \in C_i} T_{uo,i} \).

Then the problem is to find a feasible solution of (4–7). The unknowns are \(R_1, R_2, L_i, \) and \(b_i \), and integer programming can be used to find them.

Drawbacks: The computational complexity of ILP and the fact that a permissivity requirement seems rather hard to be encoded as linear constraints.
Example

Specification: $\mu_1 + \mu_3 \leq 2$; $T_{c,1} = T_{o,1} = \{t_1, t_2\}$ and $T_{c,2} = T_{o,2} = \{t_3, t_4\}$.

Take $m = 2$, $C_1 = \{1\}$ and $C_2 = \{2\}$.

Decentralized solution: $\mu_1 \leq 1$ (as $L_1 \mu \leq b_1$) and $\mu_3 \leq 1$ (as $L_2 \mu \leq b_2$).
The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting.

1. Overview of the SBPI
2. The Decentralized Setting
3. Decentralized Admissibility
4. Enforcing D-Admissible Constraints
5. **Enforcing D-Inadmissible Constraints**
 - (a) Enforcement With Communication
 - (b) Enforcement Without Communication
 > (c) Enforcement With Restricted Communication
Restricted Communication

The previous ILP approach can be used with communication extensions.

Note that:
- Communication allows improving permissivity.
- Some constraints are not enforceable without communication.

Extensions:

- The binary variables α_{ij} and ε_{ij} are introduced.
 - $\alpha_{ij} = 1$ iff the firing of t_j is announced to the supervisors of C_i.
 - $\varepsilon_{ij} = 1$ iff a supervisor from C_i remotely controls t_j.
- In particular, in the broadcast case
 - $\alpha_{ij} = \alpha_j \forall i = 1 \ldots m$ ($\alpha_j = 1$ iff each firing of t_j is broadcast, i.e., all supervisors are announced when t_j fires).
 - $\varepsilon_{ij} = \varepsilon_j \forall i = 1 \ldots m$ ($\varepsilon_j = 1$ iff all supervisors are allowed to remotely control t_j).
- Communication constraints can be incorporated as expressions of α_{ij} and ε_{ij}.
Restricted Communication

- Define B_U^i and B_L^i as upper and lower bounds of $L_i D$.
- Let $A = [\alpha_{ij}]$ and $E = [\varepsilon_{ij}]$.

The admissibility constraints $L_i D(\cdot, T_{uo}^{(i)}) \leq 0$ and $L_i D(\cdot, T_{uo}^{(i)}) = 0$ are replaced by:

\[
L_i D(\cdot, T_{uo}^{(i)}) \leq [B_U^i \text{diag}(A(i, \cdot))]_{T_{uo}^{(i)}}
\]

(8)

\[
L_i D(\cdot, T_{uo}^{(i)}) \geq [B_L^i \text{diag}(A(i, \cdot))]_{T_{uo}^{(i)}}
\]

(9)

\[
L_i D(\cdot, T_{uc}^{(i)}) \leq [B_U^i \text{diag}(E(i, \cdot))]_{T_{uc}^{(i)}}
\]

(10)

Given the weight matrices C and F, the objective of the ILP can be set to

\[
\min_{A, E, L_i, b_i, R_1, R_2} \text{Trace}(CA + FE)
\]

(11)

to minimize communication.

C/F may reflect statistics on how often the transitions t_j are fired/require control.
Manufacturing Example (Adapted from [Lin, 1990])

Machines: M_1 and M_2.
Buffers: $B_1 \ldots B_4$.
Robots: $H_1 \ldots H_4$.

Two possible manufacturing sequences:
- $\gamma_1 \tau_1 \pi_1 \alpha_3 \tau_3 \pi_3 \alpha_1 \eta_1$
- $\gamma_2 \tau_4 \pi_4 \alpha_2 \tau_2 \pi_2 \alpha_4 \eta_2$

B_1 and B_2 share common buffer space.
B_3 and B_4 share also common space.
Decentralized Supervision

\[T_{c,1} = \{t_2\} \quad T_{o,1} = \{t_2, t_3, t_4\} \]
\[T_{c,2} = \{t_5\} \quad T_{o,2} = \{t_5, t_6, t_7, t_8\} \]
\[T_{c,3} = \{t_{10}\} \quad T_{o,3} = \{t_{10}, t_{11}, t_{12}\} \]
\[T_{c,4} = \{t_{13}, t_{16}\} \quad T_{o,4} = \{t_{13}, t_{14}, t_{15}, t_{16}\} \]

Avoid buffer overflow: \(\mu_3 + \mu_{13} \leq 4 \) and \(\mu_6 + \mu_{10} \leq 4 \).

Take \(m = 4 \) and \(C_i = \{i\}, i = 1 \ldots 4 \).

Solution without communication:
\[\mu_2 + \mu_3 \leq 2 \quad \text{(sub-1)} \]
\[\mu_5 + \mu_6 \leq 2 \quad \text{(sub-2)} \]
\[\mu_9 + \mu_{10} \leq 2 \quad \text{(sub-3)} \]
\[\mu_{12} + \mu_{13} \leq 2 \quad \text{(sub-4)} \]
Decentralized Supervision

\[T_{c,1} = \{t_2\} \]
\[T_{c,2} = \{t_5\} \]
\[T_{c,3} = \{t_{10}\} \]
\[T_{c,4} = \{t_{13}, t_{16}\} \]
\[T_{o,1} = \{t_2, t_3, t_4\} \]
\[T_{o,2} = \{t_5, t_6, t_7, t_8\} \]
\[T_{o,3} = \{t_{10}, t_{11}, t_{12}\} \]
\[T_{o,4} = \{t_{13}, t_{14}, t_{15}, t_{16}\} \]

Fairness: \(v_8 - v_{16} \leq 2 \) and \(v_{16} - v_8 \leq 2 \).

\((v_i: \text{the number of firings of } t_i.) \)

No acceptable solution without communication!

Result:

subsystem 2: broadcast \(t_8 \) and enforce
\[\mu_5 + \mu_6 + \mu_7 + v_8 - v_{16} \leq 2 \]

subsystem 4: broadcast \(t_{16} \) and enforce
\[v_{16} - v_8 \leq 2 \]
Conclusion

This paper extends the SBPI to the decentralized setting.

The supervisors can be designed by constraint transformation for:

- no communication
- restricted communication
- minimal communication

This work shows that the decentralized supervision of PNs can be tractable.

On the negative side:

- Our ILP approach is suboptimal.
- Difficult to include permissivity requirements in the ILP.