Synthesis of Supervisors Enforcing General Linear Vector Constraints in Petri Nets

Marian V. Iordache and Panos J. Antsaklis
Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556
iordache.1, antsaklis.1@nd.edu
Outline

• Notation
• Description of the constraints
• Generality of the constraints
• Supervisor design for fully controllable and observable PNs
• Supervisor design for partially controllable and observable PNs
• Example
• Final Remarks
Notation

Notation: μ – the marking, μ_0 – the initial marking, D – the incidence matrix, q – the firing vector, and v – the Parikh vector. Let μ_i denote $\mu(p_i)$ and v_j denote $v(t_j)$.

The state equation: $\mu = \mu_0 + Dv$.

\[
\begin{align*}
\mu_0 &= \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T \\
v &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \\
q &= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T
\end{align*}
\]
Constraint Description

This paper shows that *generalized linear constraints*, involving the marking, the firing vector and the Parikh vector can be enforced as effectively as the linear marking constraints.

The following are defined:

1. Linear Marking Constraints
2. Constraints involving the firing vector and the marking
3. The generalized linear constraints
Constraint Description

1. *Linear Marking Constraints* (also known as *Generalized Mutual Exclusion Constraints*):

 \[L\mu \leq b \]
 \[L\mu_0 \leq b \]

 This requires the initial marking \(\mu_0 \) to satisfy

 and that a transition \(t \) may fire from a marking \(\mu \) iff

 (a) \(\mu \xrightarrow{t} \mu' \)

 (b) \(L\mu' \leq b \)

 In the literature, linear marking constraints have been used to represent

 1. Logical constraints.
 3. Markings for which a PN is deadlock-free/live.
Let $L\mu \leq b$ be $\mu_1 + \mu_3 \geq 1$. Then:

$$L = \begin{bmatrix} -1 & 0 & -1 \end{bmatrix} \quad b = \begin{bmatrix} -1 \end{bmatrix}$$

The incidence matrix is:

$$D = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & -1 & -1 \end{bmatrix}$$

The supervisor has one control place (as L has one row):

$$D_s = -LD = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

The initial marking of the supervisor is

$$\mu_{s0} = b - L\mu_0 = \begin{bmatrix} 1 \end{bmatrix}$$

As $\mu_s = b - L\mu$ for all reachable markings μ, the method is called *supervision based on place invariants*.

M. V. Iordache and P. J. Antsaklis, *Synthesis of Supervisors Enforcing General Linear Constraints in Petri Nets*
2. *Constraints involving the marking and the firing vector.*

\[L\mu + Hq \leq b \]

(2)

This requires the initial marking \(\mu_0 \) to satisfy

\[L\mu_0 \leq b \]

and that a transition \(t_i \) may fire from a marking \(\mu \) iff

(a) \(\mu \xrightarrow{t_i} \mu' \)

(b) \(L\mu' \leq b \)

(c) \(L\mu + Hq \leq b \) for \(q(i) = 1 \) and \(q(j) = 0 \) \(\forall j \neq i \).

In the literature, constraints involving the firing vector have been used for

2. The control of railway networks.
3. *The generalized linear constraints:*

\[L\mu + Hq + Cv \leq b \]

This requires the initial marking \(\mu_0 \) to satisfy

\[L\mu_0 \leq b \]

and that a transition \(t_i \) may fire from a current state \((\mu, v)\) iff

(a) \(\mu \xrightarrow{t_i} \mu' \)

(b) \(L\mu + Hq + Cv \leq b \) for \(q(i) = 1 \) and \(q(j) = 0 \) \(\forall j \neq i \).

(c) \(L\mu' + Cv' \leq b \), where \(v' = v + q \).
Constraint Generality

Application of generalized linear constraints:

1. In the literature, the simpler constraints $Cv \leq b$ have been used to specify fairness constraints.
2. We show that any supervisor designed as control places arbitrarily connected to the places of a PN can be described as enforcing constraints $Hq + Cv \leq b$.
3. We show on an AGV coordination example how constraints in the generalized linear form can naturally arise.
The places of any PN can be seen as control places enforcing (3):

\[
\begin{align*}
(p_1) & \quad v_1 \leq 3 \\
(p_2) & \quad v_2 - v_3 \leq 0 \\
(p_3) & \quad -v_2 + v_3 \leq 1
\end{align*}
\]
Given $L\mu + Hq + Cv \leq b$, let:

\[
D_{lc}^+ = \max(0, -LD - C) \tag{4}
\]
\[
D_{lc}^- = \max(0, LD + C) \tag{5}
\]

The supervisor is given by the incidence matrices:

\[
D_c^+ = D_{lc}^+ + \max(0, H - D_{lc}^-) \tag{6}
\]
\[
D_c^- = \max(D_{lc}^-, H) \tag{7}
\]

The initial marking of the supervisor is:

\[
\mu_{c0} = b - L\mu_0 \tag{8}
\]

Theorem 1. The supervisor defined by the input and output matrices D_c^+ and D_c^- and of initial marking μ_{c0}, enforces $L\mu + Hq + Cv \leq b$ and is least restrictive.
A set of constraints $L\mu + Hq + C\nu \leq b$ is said to be **admissible** if the approach for fully controllable and observable PNs generates a supervisor which never attempts to inhibit plant-enabled uncontrollable transitions and detect closed-loop-enabled unobservable transitions.

If $L\mu + Hq + C\nu \leq b$ is not admissible, our approach is to find a set of constraints $L\alpha\mu + H\alpha q + C\alpha\nu \leq b$ such that

1. $L\alpha\mu + H\alpha q + C\alpha\nu \leq b \Rightarrow L\mu + Hq + C\nu \leq b$
2. $L\alpha\mu + H\alpha q + C\alpha\nu \leq b$ is admissible.

Effective techniques exist for enforcing constraints $L\mu \leq b$ in partially controllable and observable PNs.

Our approach transforms the problem of enforcing $L\mu + Hq + C\nu \leq b$ into the problem of enforcing $L_t\mu_t \leq b$ in a transformed PN.
Illustration of the *C-Transformation*:

This transformation maps

\[\mu_1 + q_1 + v_2 - v_3 \leq 3 \quad (9) \]

into

\[\mu_1 + q_1 + \mu_4 - \mu_5 \leq 3 \quad (10) \]

The inverse transformation is possible and maps

\[\mu_1 - 3\mu_4 + 2\mu_5 + q_1 \leq 5 \quad (11) \]

into

\[\mu_1 + q_1 - 3v_2 + 2v_3 \leq 5 \quad (12) \]
Illustration of the *H-Transformation*:

This transformation maps

$$\mu_1 + \mu_2 + 2\mu_3 + q_3 \leq 5$$ \hspace{1cm} (13)

into

$$\mu_1 + \mu_2 + 2\mu_3 + 4\mu_5 \leq 5$$ \hspace{1cm} (14)

The term $4\mu_5$ is obtained as follows. Consider firing t_3 in the transformed net: $\mu \xrightarrow{t_3} \mu'$. The coefficient a of t_3 is to satisfy that

$$a + \mu_1' + \mu_2' + 2\mu_3' = 1 + \mu_1 + \mu_2 + 2\mu_3$$

The inverse transformation can also be defined.
Supervisor Design

Given the PN \mathcal{N} and the set of constraints $L\mu + Hq + Cv \leq b$:

1. Apply the C-transformation and then the H-transformation. This maps \mathcal{N} to \mathcal{N}_{HC} and $L\mu + Hq + Cv \leq b$ to $L_{HC}\mu \leq b$.

2. Test whether $L_{HC}\mu_{HC} \leq b$ is admissible in \mathcal{N}_{HC}. If so, exit, and declare $L\mu + Hq + Cv \leq b$ admissible.

3. Find a set of admissible constraints $L_{HCa}\mu_{HC} \leq b_a$ such that $L_{HCa}\mu_{HC} \leq b_a \Rightarrow L_{HC}\mu_{HC} \leq b$. In case of failure, exit and declare failure to find admissible constraints.

4. Apply the inverse H- and C-transformations. This maps $L_{HCa}\mu_{HC} \leq b_a$ to $L_a\mu + Haq + Cav \leq b_a$.

Theorem 2. $L_a\mu + Haq + Cav \leq b_a$ is admissible, and a supervisor enforcing it enforces also $L\mu + Hq + Cv \leq b$ (that is, $L_a\mu + Haq + Cav \leq b_a \Rightarrow L\mu + Hq + Cv \leq b$.)
The number of AVs in the RA is $v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}$ and is limited to m.

It is necessary to wait for arbitration when the number of AVs in the RA is $m - 1$ and both a left and a right vehicle attempt to enter the RA.

AVs should not wait for arbitration otherwise.

The arbitration is to be fair (not to favor left or right AVs).
Example

<table>
<thead>
<tr>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2q_5 + \mu_2 + \mu_7 \leq m - (v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}) + 1$ (inadmissible) (15)</td>
</tr>
<tr>
<td>$2q_4 + \mu_3 + \mu_8 \leq m - (v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}) + 1$ (inadmissible) (16)</td>
</tr>
<tr>
<td>$mq_3 \leq \mu_3 + \mu_8 + v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}$ (impossible) (17)</td>
</tr>
<tr>
<td>$mq_6 \leq \mu_2 + \mu_7 + v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}$ (impossible) (18)</td>
</tr>
</tbody>
</table>

$$\mu_2 + \mu_7 \leq 1$$ (admissible) (19)

$$\mu_3 + \mu_8 \leq 1$$ (admissible) (20)

The requirement on the maximum number of AVs in the RA is

$$(v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}) \leq m$$ (inadmissible) (21)

Fairness constraints:

$$(v_3 - v_6) \leq n$$ (admissible) (22)

$$(v_3 - v_6) \leq n$$ (admissible) (23)
Example

The Transformed Constraints

Transformed constraints

\[2q_5 + \mu_2 + \mu_5 + \mu_6 + \mu_7 + v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10} \leq m + 1 \] (24)

\[2q_4 + \mu_3 + \mu_5 + \mu_6 + \mu_8 + v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10} \leq m + 1 \] (25)

\[v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10} + \mu_5 + \mu_6 \leq m \] (26)

Relaxed constraints:

\[mq_3 - \mu_3 - \mu_8 - \mu_5 - \mu_6 - (v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}) \leq 0 \] (27)

\[mq_6 - \mu_2 - \mu_7 - \mu_5 - \mu_6 - (v_{13} + v_{14} + v_4 + v_5 - v_9 - v_{10}) \leq 0 \] (28)
Example

The Supervised PN

M. V. Iordache and P. J. Antsaklis, Synthesis of Supervisors Enforcing General Linear Constraints in Petri Nets
\[D_c = \]

\[
\begin{bmatrix}
0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Final Remarks

Computability: This paper has shown that generalized linear constraints can be enforced as effectively as linear marking constraints.

Generality: Generalized linear constraints can describe any supervisor consisting of control places connected to the transitions of a plant PN.

Flexibility: The technique of this paper transforms the problem of enforcing generalized linear constraints into a problem of enforcing linear marking constraints. Any method can then be used to solve the linear marking constraint problem.

Implementation: Software implementation available within the DES software package at: http://www.nd.edu/~isis/techreports/spnbox/
References

